Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
BMC Genomics ; 25(1): 334, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570736

RESUMO

BACKGROUND: Mimosa bimucronata originates from tropical America and exhibits distinctive leaf movement characterized by a relative slow speed. Additionally, this species possesses the ability to fix nitrogen. Despite these intriguing traits, comprehensive studies have been hindered by the lack of genomic resources for M. bimucronata. RESULTS: To unravel the intricacies of leaf movement and nitrogen fixation, we successfully assembled a high-quality, haplotype-resolved, reference genome at the chromosome level, spanning 648 Mb and anchored in 13 pseudochromosomes. A total of 32,146 protein-coding genes were annotated. In particular, haplotype A was annotated with 31,035 protein-coding genes, and haplotype B with 31,440 protein-coding genes. Structural variations (SVs) and allele specific expression (ASE) analyses uncovered the potential role of structural variants in leaf movement and nitrogen fixation in M. bimucronata. Two whole-genome duplication (WGD) events were detected, that occurred ~ 2.9 and ~ 73.5 million years ago. Transcriptome and co-expression network analyses revealed the involvement of aquaporins (AQPs) and Ca2+-related ion channel genes in leaf movement. Moreover, we also identified nodulation-related genes and analyzed the structure and evolution of the key gene NIN in the process of symbiotic nitrogen fixation (SNF). CONCLUSION: The detailed comparative genomic and transcriptomic analyses provided insights into the mechanisms governing leaf movement and nitrogen fixation in M. bimucronata. This research yielded genomic resources and provided an important reference for functional genomic studies of M. bimucronata and other legume species.


Assuntos
Fabaceae , Mimosa , Fixação de Nitrogênio/genética , Haplótipos , Folhas de Planta/genética
2.
Food Chem Toxicol ; 184: 114378, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38097005

RESUMO

Evidence suggests that ferroptosis participates in kidney injury. However, the role of ferroptosis in antimony (Sb) induced nephrotoxicity and the mechanism are unknown. Here, we demonstrated that Sb induced injury in renal tubular epithelial cells (RTECs) and ferroptosis. Inhibition of ferroptosis reduced RTECs injury. Besides, elimination of reactive oxygen species (ROS) alleviated ferroptosis and RTECs injury. Moreover, exposure to Sb not only increased the co-localization of glutathione peroxidase 4 (GPX4) and LAMP1, but also decreased the levels of MEF2D and LRRK2, while increased the levels of HSC70, HSP90, and LAMP2a. These findings suggest that Sb activates chaperone-mediated autophagy (CMA), enhances lysosomal transport and subsequent degradation of GPX4, ultimately leads to ferroptosis. Additionally, up-regulation of lysosomal cationic channel, TRPML1, mitigated RTECs injury and ferroptosis. Mechanistically, up-regulation of TRPML1 mitigated the changes in CMA-associated proteins induced by Sb, diminished the binding of HSC70, HSP90, and TRPML1 with LAMP2a. Furthermore, NAC restored the decreased TRPML1 level caused by Sb. In summary, deficiency of TRPML1, secondary to increased ROS induced by Sb, facilitates the CMA-dependent degradation of GPX4, thereby leading to ferroptosis and RTECs injury. These findings provide insights into the mechanism underlying Sb-induced nephrotoxicity and propose TRPML1 as a promising therapeutic target.


Assuntos
Autofagia Mediada por Chaperonas , Ferroptose , Espécies Reativas de Oxigênio/metabolismo , Antimônio/toxicidade , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteínas de Choque Térmico HSP90 , Autofagia
3.
Mol Neurobiol ; 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37924484

RESUMO

We monitored CSF (cerebrospinal fluid) for Th1/Th2 inflammatory cytokines in a patient with unexplained postoperative disturbance of consciousness after craniotomy and found that the level of IL-6 (interleukin-6) concentrations was extremely high, meeting the traditional criteria for an inflammatory cytokine storm. Subsequently, the cerebrospinal fluid specimens of several patients were tested, and it was found that IL-6 levels were increased in different degrees after craniotomy. Previous studies have focused more on mild and long-term IL-6 elevation, but less on the effects of this short-term IL-6 inflammatory cytokine storm. Cerebrospinal fluid rich in IL-6 may play a significant role in patients after craniotomy. The objective is to explore the degree of IL-6 elevation and the incidence of IL-6 inflammatory cytokine storm in patients after craniotomy, as well as the effect of IL-6 elevation on the brain. In this study, the levels and clinical manifestations of inflammatory factors in cerebrospinal fluid after craniotomy were statistically classified, and the underlying mechanisms were discussed preliminarily. CSF specimens of patients after craniotomy were collected, IL-6 level was measured at 1, 5, and 10 days after operation, and cognitive function was analyzed at 1, 10, and 180 days after surgery. Craniotomy mouse model, cerebrospinal fluid of patients with the appearance of IL-6 storm after craniotomy, and IL-6 at the same concentration stimulation model were established. Behavioral tests, fluorescence in situ hybridization (FISH), pathological means, western blot, and ELISA (enzyme-linked immune-sorbent assay) were performed for verification. CSF from patients after craniotomy caused disturbance of consciousness in mice, affected neuronal damage in the hypothalamus, activation of microglia in the hypothalamus, and decreased expression of barrier proteins in the hypothalamus and brain. The large amount of interleukin-6 in CSF after craniotomy was found to be mainly derived from astrocytes. The IL-6 level in CSF after craniotomy correlated inversely with patients' performance in MoCA test. High levels of IL-6 in the cerebrospinal fluid derived from astrocytes after craniotomy may lead to disruption of the brain-cerebrospinal fluid barrier, most notably around the hypothalamus, which might result in inflammatory activation of microglia to damage the hypothalamic neurons and impaired cognitive function/more gradual cognitive repairment in patients after craniotomy with the appearance of IL-6 storm.

4.
Materials (Basel) ; 16(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37570167

RESUMO

In this work, a novel flow-electric field coupling configuration was designed and implemented for enhancing Zn-Cd cementation. A series of tests was conducted to explore the optimization of the Zn-Cd cementation process and its mechanism. Firstly, the various characteristics of the sponge cadmium at various locations in the device were compared, and it was concluded that the optimum purity of the sponge cadmium obtained from the anode was up to 94.1%. The generation and stripping of the cadmium sponge was revealed for the first time by cross-sectional electron microscopy. The four stages of the apparent reaction in the system were analyzed in relation to the pH, cadmium concentration and cadmium sponge flaking at each flow rate. It was proved that the separation of cadmium sponge mainly occurred in the third phase. Secondly, by comparing the morphology and specific surface area of the cadmium sponge at different flow rates, the optimum flow field velocity was identified as 30 mL/s. At this point, the specific surface area reached a maximum of 1.151 m2/g. Six flow field configurations were compared and preferred. The results demonstrated that the LCAH (Low-Cathode-Anode-High) modulation resulted in a sparser structure of the cadmium sponge, which was more easily exfoliated from the zinc anode surface by fluid impact. This was considered to be the most beneficial flow field configuration for improving the cadmium cementation rate and reducing the cost of the reaction. Moreover, the reaction steps of the system were analyzed. Its rate-limiting step was initially empirically identified as the diffusion step and proven by calculating the activation energy of 12.6 kJ/mol. It was confirmed that the diffusion process under different flow field configurations followed the first-order kinetic principle. In addition, the system's reaction phases were compared. Calculations confirmed that the diffusion process under various flow field configurations followed first-order kinetics. The diffusion coefficient of LACH proved to be the highest in the comparative tests, and the evident experimental results supported this conclusion.

5.
Plants (Basel) ; 12(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37446962

RESUMO

Petaloidy leads to a plump floral pattern and increases the landscape value of ornamental pomegranates; however, research on the mechanism of petaloidy in ornamental pomegranates is limited. In this study, we aimed to screen candidate genes related to petaloidy. We performed transcriptomic and proteomic sequencing of the stamens and petals of single-petal and double-petal flowers of ornamental pomegranates. Briefly, 24,567 genes and 5865 proteins were identified, of which 5721 genes were quantified at both transcriptional and translational levels. In the petal and stamen comparison groups, the association between differentially abundant proteins (DAPs) and differentially expressed genes (DEGs) was higher than that between all genes and all proteins, indicating that petaloidy impacts the correlation between genes and proteins. The enrichment results of transcriptome, proteome, and correlation analyses showed that cell wall metabolism, jasmonic acid signal transduction, redox balance, and transmembrane transport affected petaloidy. Nine hormone-related DEGs/DAPs were selected, among which ARF, ILR1, LAX2, and JAR1 may promote petal doubling. Sixteen transcription factor DEGs/DAPs were selected, among which EREBP, LOB, MEF2, MYB, C3H, and trihelix may promote petal doubling. Our results provide transcriptomic and proteomic data on the formation mechanism of petaloidy and a theoretical basis for breeding new ornamental pomegranate varieties.

6.
Toxicol Res (Camb) ; 12(2): 332-343, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37125328

RESUMO

Plasticizer di(2-ethylhexyl) phthalate (DEHP) is employed to make polyethylene polymers. Some studies in epidemiology and toxicology have shown that DEHP exposure over an extended period may be hazardous to the body, including nephrotoxicity, and aggravate kidney damage in the context of underlying disease. However, studies on the toxicity of DEHP in diabetes-induced kidney injury have been rarely reported. Using a high-fat diet (HFD) and streptozotocin (STZ, 35 mg/kg)-induced kidney injury in mice exposed to various daily DEHP dosages, we explored the impacts of DEHP on diabetes-induced kidney injury. We discovered that DEHP exposure significantly promoted the renal inflammatory response and oxidative stress in mice, with increased P-p38 and P-p65 protein levels and exacerbated the loss of podocin. The same findings were observed in vitro after stimulation of podocytes with high glucose (30 mmol/L) and exposure to DEHP. Our results suggest that DEHP exacerbates diabetes-induced kidney injury by mediating oxidative stress and activating p38MAPK/NF-κB.

7.
J Agric Food Chem ; 71(21): 8192-8202, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37204063

RESUMO

Short-chain chlorinated paraffins (SCCPs) are novel toxicants in food and are reported to possess neurotoxicity. Here, we investigated the mechanism of SCCP-induced astrocyte activation and neuroinflammation. SCCP gavage induced astrocyte activation and neuronal cell death with the changes of gut microbiome and metabolites. Antibiotic cocktail administration to deplete the gut microbiome ameliorated the astrocyte activation and inflammation induced by SCCPs. In fecal microbiota transplantation (FMT) assays, mice that received transplanted gut microbiome from SCCP-treated mice showed increased astrocyte activation and elevated inflammatory response. In addition, SCCP exposure promotes zonulin expression and tight junction injury, and antibiotic cocktail administration inhibited that in the intestinal tract. Increased zonulin and tight junction injury were also observed in SCCPs_FMT mice. The zonulin inhibition protected the tight junction in the intestinal tract from SCCP exposure and suppressed astrocyte activation. In summary, this study proposes a novel possibility for SCCP-induced astrocyte activation and neurotoxicity by the gut microbiome-mediated zonulin expression and tight junction.


Assuntos
Microbioma Gastrointestinal , Hidrocarbonetos Clorados , Animais , Camundongos , Parafina , Regulação para Cima , Astrócitos , Junções Íntimas , Monitoramento Ambiental , China
8.
Chromosome Res ; 31(2): 12, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971835

RESUMO

Centromeres in eukaryotes are composed of highly repetitive DNAs, which evolve rapidly and are thought to achieve a favorable structure in mature centromeres. However, how the centromeric repeat evolves into an adaptive structure is largely unknown. We characterized the centromeric sequences of Gossypium anomalum through chromatin immunoprecipitation against CENH3 antibodies. We revealed that the G. anomalum centromeres contained only retrotransposon-like repeats but were depleted in long arrays of satellites. These retrotransposon-like centromeric repeats were present in the African-Asian and Australian lineage species, suggesting that they might have arisen in the common ancestor of these diploid species. Intriguingly, we observed a substantial increase and decrease in copy numbers among African-Asian and Australian lineages, respectively, for the retrotransposon-derived centromeric repeats without apparent structure or sequence variation in cotton. This result indicates that the sequence content is not a decisive aspect of the adaptive evolution of centromeric repeats or at least retrotransposon-like centromeric repeats. In addition, two active genes with potential roles in gametogenesis or flowering were identified in CENH3 nucleosome-binding regions. Our results provide new insights into the constitution of centromeric repetitive DNA and the adaptive evolution of centromeric repeats in plants.


Assuntos
Gossypium , Retroelementos , Gossypium/genética , Austrália , Centrômero/genética
9.
Polymers (Basel) ; 15(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36771804

RESUMO

In this study, a heavy metal trapping gel with multiple ligand groups was prepared for the first time using response surface methodology. The gel was produced by condensing and grafting glutathione as a grafting monomer onto the main polyacrylamide chain, based on the Mannich reaction mechanism with formaldehyde. FTIR, SEM, TG-DSC, and zeta potentials were used to characterize the gel. The results demonstrated that the gel was morphologically folded and porous, with a net-like structure, which enhanced its net trapping and sweeping abilities, and that glutathione was used to provide sulfhydryl groups to boost the metal trapping ability of polyacrylamide. Coagulation experiments showed that the highest efficiency of the removal of Cd ions from water samples was achieved when the concentration of polyacrylamide-glutathione was 84.48 mgL-1, the concentration of Cd was 10.0 mgL-1, the initial turbidity was 10.40 NTU, and the initial pH was 9.0. Furthermore, the presence of two cations, Cu and Zn, had an inhibitory effect on the removal of Cd ions. In addition, analysis of the zeta potential revealed the flocculation of polyacrylamide-glutathione. The flocculation mechanism of glutathione is mainly chelation, adsorption bridging, and netting sweeping.

10.
Ecotoxicol Environ Saf ; 248: 114268, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375367

RESUMO

In the last few decades, short-chain chlorinated paraffins (SCCPs) have become the most heavily produced monomeric organohalogen compounds, and have been reported to induce multiple organ toxicity. However, the effects of SCCPs on the central nervous system are unknown. In the present study, we show that SCCP exposure induced astrocyte proliferation and increased the expression of two critical markers of astrocyte activation, glial fibrillary acidic protein and inducible nitric oxide synthase, in vivo and in vitro. SCCP exposure also increased inflammatory factory gene expression. Moreover, SCCP treatment triggered Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signalling, as shown by increased phosphorylation and STAT3 translocation to the nucleus. Both JAK2 and STAT3 inhibition effectively attenuated SCCP-induced astrocyte activation. Finally, JAK2 inhibition significantly rescued STAT3 phosphorylation and nuclear translocation. Taken together, JAK2/STAT3 pathway activation contributed to SCCP-induced astrocyte activation. These data will help elucidate the molecular mechanism underlying SCCP-induced neurotoxicity.


Assuntos
Janus Quinase 2 , Fator de Transcrição STAT3 , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Parafina , Astrócitos , Transdução de Sinais
11.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36293004

RESUMO

Osmanthus fragrans flowers have long been used as raw materials in food, tea, beverage, and perfume industries due to their attractive and strong fragrance. The P450 superfamily proteins have been reported to widely participate in the synthesis of plant floral volatile organic compounds (VOCs). To investigate the potential functions of P450 superfamily proteins in the fragrance synthesis of O. fragrans, we investigated the P450 superfamily genome wide. A total of 276 P450 genes were identified belonging to 40 families. The RNA-seq data suggested that many OfCYP genes were preferentially expressed in the flower or other organs, and some were also induced by multiple abiotic stresses. The expression patterns of seven flower-preferentially expressed OfCYPs during the five different flower aroma content stages were further explored using quantitative real-time PCR, showing that the CYP94C subfamily member OfCYP142 had the highest positive correlation with linalool synthesis gene OfTPS2. The transient expression of OfCYP142 in O. fragrans petals suggested that OfCYP142 can increase the content of linalool, an important VOC of the O. fragrans floral aroma, and a similar result was also obtained in flowers of OfCYP142 transgenic tobacco. Combined with RNA-seq data of the transiently transformed O. fragrans petals, we found that the biosynthesis pathway of secondary metabolites was significantly enriched, and many 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway genes were also upregulated. This evidence indicated that the OfCYP proteins may play critical roles in the flower development and abiotic response of O. fragrans, and that OfCYP142 can participate in linalool synthesis. This study provides valuable information about the functions of P450 genes and a valuable guide for studying further functions of OfCYPs in promoting fragrance biosynthesis of ornamental plants.


Assuntos
Oleaceae , Perfumes , Compostos Orgânicos Voláteis , Humanos , Oleaceae/genética , Flores/genética , Sistema Enzimático do Citocromo P-450/genética , Chá
12.
Front Genet ; 13: 990344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118855

RESUMO

Peroxidase (PXDN), a specific extracellular matrix (ECM)-associated protein, has been determined as a tumor indicator and therapeutic target in various tumors. However, the effects of PXDN in prognostic performance and clinical implications in glioblastoma multiforme (GBM) remains unknown. Here, we assessed PXDN expression pattern and its performance on prognosis among GBM cases from TCGA and CGGA databases. PXDN was up-regulated within GBM samples in comparison with normal control. High PXDN expression was a dismal prognostic indicator in GBM. Single cell RNA analysis was conducted to detect the cell localization of PXDN. We also set up a PPI network to explore the interacting protein associated with PXDN, including TSKU, COL4A1 and COL5A1. Consistently, functional enrichment analysis revealed that several cancer hallmarks were enriched in the GBM cases with high PXDN expression, such as epithelial-mesenchymal transition (EMT), fatty acid metabolism, glycolysis, hypoxia, inflammatory response, and Wnt/beta-catenin signaling pathway. Next, this study analyzed the association of PXDN expression and immunocyte infiltration. PXDN expression was in direct proportion to the infiltrating degrees of NK cells resting, T cells regulatory, M0 macrophage, monocytes and eosinophils. The roles of PXDN on immunity were further estimated by PXDN-associated immunomodulators. In addition, four prognosis-related lncRNAs co-expressed with PXDN were identified. Finally, we observed that PXDN depletion inhibits GBM cell proliferation and migration by in vitro experiments. Our data suggested that PXDN has the potential to be a powerful prognostic biomarker, which might offer a basis for developing therapeutic targets for GBM.

13.
Sci Rep ; 12(1): 7609, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534621

RESUMO

Osmanthus fragrans is an important evergreen species with both medicinal and ornamental value in China. Given the low efficiency of callus proliferation and the difficulty of adventitious bud differentiation, tissue culture and regeneration systems have not been successfully established for this species. To understand the mechanism of callus proliferation, transcriptome sequencing and endogenous hormone content determination were performed from the initial growth stages to the early stages of senescence on O. fragrans calli. In total, 47,340 genes were identified by transcriptome sequencing, including 1798 previously unidentified genes specifically involved in callus development. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed genes (DEGs) was significantly enriched in plant hormone signal transduction pathways. Furthermore, our results from the orthogonal projections to latent structures discrimination analysis (OPLS-DA) of six typical hormones in five development stages of O. fragrans calli showed jasmonic acid (JA) could play important role in the initial stages of calli growth, whereas JA and auxin (IAA) were dominant in the early stages of calli senescence. Based on the weighted gene co-expression network analysis, OfSRC2, OfPP2CD5 and OfARR1, OfPYL3, OfEIL3b were selected as hub genes from the modules with the significant relevance to JA and IAA respectively. The gene regulation network and quantitative real-time PCR implied that during the initial stages of callus growth, the transcription factors (TFs) OfERF4 and OfMYC2a could down-regulate the expression of hub genes OfSRC2 and OfPP2CD5, resulting in decreased JA content and rapid callus growth; during the late stage of callus growth, the TFs OfERF4, OfMYC2a and OfTGA21c, OfHSFA1 could positively regulate the expression of hub genes OfSRC2, OfPP2CD5 and OfARR1, OfPYL3, OfEIL3b, respectively, leading to increased JA and IAA contents and inducing the senescence of O. fragrans calli. Hopefully, our results could provide new insights into the molecular mechanism of the proliferation of O. fragrans calli.


Assuntos
Oleaceae , Transcriptoma , Proliferação de Células , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Hormônios
14.
Front Plant Sci ; 13: 765213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356120

RESUMO

As an important member of the MYB transcription factor (TF) family, the MYB-related TFs play multiple roles in regulating the synthesis of secondary metabolites and developmental processes, as well as in response to numerous biotic and abiotic stressors in plants. However, little is known regarding their roles in regulating the formation of floral volatile organic compounds (VOCs). In this study, we conducted a genome-wide analysis of MYB-related proteins in sweet osmanthus; 212 OfMYB-related TFs were divided into three distinct subgroups based on the phylogenetic analysis. Additionally, we found that the expansion of the OfMYB-related genes occurred primarily through segmental duplication events, and purifying selection occurred in all duplicated gene pairs. RNA-seq data revealed that the OfMYB-related genes were widely expressed in different organs of sweet osmanthus, and some showed flower organ/development stage-preferential expression patterns. Here, three OfMYB-related genes (OfMYB1R70/114/201), which were expressed nuclearly in floral organs, were found to be significantly involved in regulating the synthesis of floral VOCs. Only, OfMYB1R201 had transcriptional activity, thus implying that this gene participates in regulating the expression of VOC synthesis related genes. Remarkably, the transient expression results suggested that OfMYB1R70, OfMYB1R114, and OfMYB1R201 are involved in the regulation of VOC synthesis; OfMYB1R114 and OfMYB1R70 are involved in accelerating ß-ionone formation. In contrast, OfMYB1R201 decreases the synthesis of ß-ionone. Our results deepen our knowledge of the functions of MYB-related TFs and provide critical candidate genes for the floral aroma breeding of sweet osmanthus in the future.

15.
Ecotoxicol Environ Saf ; 234: 113413, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35305351

RESUMO

Exposure to antimony (Sb), recently identified as a nerve pollutant, can result in neuron damage; but, associated-neurotoxicological mechanisms were still not clear. Herein, we assessed the role of ferroptosis in Sb-mediated neurotoxicity and clarified the underlying mechanism. Following Sb exposure, ferroptosis was significantly promoted in vivo and in vitro. Moreover, following use of ferrostatin-1 (fer-1) to inhibit ferroptosis, Sb-induced ferroptosis in PC12 cells was effectively attenuated. Sb accelerated lysosomal transport and subsequent degradation of glutathione peroxidase 4 (GPX4), resulting in ferroptosis. Furthermore, chaperone-mediated autophagy (CMA) was activated following treatment with Sb, while inhibition of CMA by lysosomal associated protein 2 A (LAMP2A) knockdown attenuated Sb-induced GPX4 degradation. Sb treatment also increased expression of the chaperones heat shock cognate protein 70 (HSC70) and heat shock protein 90 (HSP90) and the lysosome receptor LAMP2A, and increased binding of HSP90, HSC70, and LAMP2A with GPX4 was observed, indicating increased formation of the chaperone-GPX4 complex. Finally, GPX4 overexpression significantly protected PC12 cells from activation of Sb-stimulated ferroptosis and subsequent cytotoxicity. Collectively, our results provide a original mechanism by which Sb triggers neurotoxicity, to concluded that Sb stimulates neuronal ferroptosis through CMA-mediated GPX4 degradation.

16.
Vasc Med ; 27(3): 239-250, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35164613

RESUMO

Introduction: Femoropopliteal artery in-stent restenosis (ISR) remains a challenging treatment. We performed a network meta-analysis (NWM) for femoropopliteal artery ISR to explore the safety and efficacy of endovascular therapeutic strategies. Methods: The MEDLINE, Embase, Web of Science, and Cochrane databases were used as data sources. The network meta-analysis (NWM) approach used random-effects models based on the frequentist framework. We compared technical success rate, primary patency, target lesion revascularization (TLR), and major amputation at the 12-month follow-up for femoropopliteal artery ISR. Results: In total, 14 eligible studies (10 prospective and four retrospective; 1348 patients; and eight treatment modalities - standard balloon angioplasty (SBA), drug-coated balloon (DCB), peripheral cutting balloon angioplasty (PCBA), Viabahn endoprosthesis (VBE), directional atherectomy (DA), excimer laser atherectomy (ELA), and combinations - were included. The primary patency rates (at 6 months) were significantly higher for DCB and ELA+DCB than for SBA and ELA+SBA. ELA+DCB had higher primary patency rates (at 12 months) than ELA+SBA and SBA. The technical success rates were significantly lower for DCB and SBA than for VBE. The major amputation rates were significantly lower for ELA+DCB than for DCB. Based on the surface values under the cumulative ranking curve (SUCRA), ELA+DCB was considered the best treatment in terms of primary patency at 6 months (SUCRA = 91.1), primary patency at 12 months (SUCRA = 82.3), and TLR (SUCRA = 83.4). Conclusion: ELA+DCB showed positive encouraging results in primary patency (6, 12 months), TLR, and major amputation in femoropopliteal ISR. The efficacy and safety of ELA+DCB are worthy of further investigation. PROSPERO Registration No.: CRD42021246674.


Assuntos
Angioplastia com Balão , Reestenose Coronária , Doença Arterial Periférica , Angioplastia com Balão/efeitos adversos , Materiais Revestidos Biocompatíveis , Constrição Patológica , Artéria Femoral/diagnóstico por imagem , Humanos , Metanálise em Rede , Doença Arterial Periférica/cirurgia , Doença Arterial Periférica/terapia , Artéria Poplítea/diagnóstico por imagem , Artéria Poplítea/cirurgia , Estudos Prospectivos , Estudos Retrospectivos , Resultado do Tratamento , Grau de Desobstrução Vascular
17.
Waste Manag ; 138: 116-124, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34875454

RESUMO

Emissions of odorous and volatile organic compounds (VOCs) were investigated between two sludge drying methods. A total of 37 chemical compounds were identified and quantified from the off-gases from sludge drying by indirect drying method. The total number of VOCs detected ranged from 3.45 × 10-3 to 4.53 mg/m3, which includes benzene series, volatile organic sulfur, and nitrogenous organic compounds. High emissions were found in the exhaust gas released from drying workshop that used direct drying method. Sulfur dioxide, aromatics, and chlorinated compounds were dominant. Based on the olfactory effect analysis and cancer risk assessment, the main odor-causing gaseous pollutants were methyl mercaptan and methyl sulfide (for indirect sludge drying process) and SO2 (for direct sludge drying process), while the dominant carcinogens were benzene, carbon tetrachloride, chloroform, and methylene. This study provides new insights into the emission characteristics, olfactory effects, and cancer risks of VOCs and odorous compounds in the exhaust gas from thermal sludge drying processes.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Dessecação , Odorantes/análise , Esgotos/análise , Dióxido de Enxofre , Compostos Orgânicos Voláteis/análise
18.
Toxicol Lett ; 352: 9-16, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571074

RESUMO

Recent studies suggest that the chemical element antimony (Sb) is neurotoxic; however, the molecular mechanisms behind Sb-related neuronal damage are currently unknown. In this study, we found that Sb exposure promoted astrocyte proliferation and increased the expression of inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP), two key protein markers of reactive astrogliosis, at both the gene and protein level, suggesting that Sb induced astrocyte activation. Moreover, the p38 mitogen-activated protein kinase (p38 MAPK) and extracellular signal-related kinase (ERK) pathways were activated following Sb exposure. Inhibition of p38 MAPK reduced Sb-induced iNOS and GFAP upregulation, while inhibiting ERK reduced GFAP expression only, in Sb-exposed C6 cells. Sb treatment also induced the phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), and the inhibition of CREB caused a reduction in Sb-induced GFAP and iNOS expression. Furthermore, inhibiting both p38 MAPK and ERK effectively alleviated CREB phosphorylation in Sb-exposed C6 cells. Taken together, our results suggest that p38 MAPK and ERK activation mediate Sb-induced astrocyte activation through CREB phosphorylation. These results help to clarify the molecular mechanisms underlying Sb-associated neurotoxicity.


Assuntos
Antimônio/toxicidade , Astrócitos/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Animais , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Fosforilação/efeitos dos fármacos
19.
Anal Sci ; 37(12): 1701-1706, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34054007

RESUMO

As a gram-positive foodborne pathogen, Listeria monocytogenes (LM) can cause many serious diseases to the human health coupled with high mortality rates; thus, constructing an effective method to detect LM is of great significance. Herein, a novel sandwich-type electrochemical immunosensor is proposed for LM by introducing 3,4,9,10-perylene tetracarboxylic acid/graphene ribbons (PTCA/GNR) nanohybrids as a sensing platform and ferrocene/gold nanoparticles (Fc/Au NPs) as a signal amplifier. The high conductivity and large surface area of GNR can increase the immobilizing amount of the primary antibody (PAb) and enhance the electron transport rate, while Au NPs can carry secondary antibodies (SAb) and Fc derivative (Fc-SH) to form a SAb-Au NPs-Fc signal amplifier. Through using Fc molecules as a signal probe, its peak current can appear and increase varied from the LM concentrations; hence, a highly sensitive sandwich-type immunosensor was constructed wide linear range from 10 to 2 × 104-CFU mL-1 and low limit of detection of low to 6 CFU mL-1. Furthermore, the specificity of the immunosensor was also studied and a satisfactory result was obtained.


Assuntos
Técnicas Biossensoriais , Grafite , Listeria monocytogenes , Nanopartículas Metálicas , Técnicas Eletroquímicas , Ouro , Humanos , Imunoensaio , Limite de Detecção , Metalocenos , Perileno/análogos & derivados
20.
J Pathol Clin Res ; 7(4): 375-384, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33768710

RESUMO

The molecular profile of neurotrophic tyrosine kinase receptor (NTRK) gene fusions in lung adenocarcinoma (LUAD) is not fully understood. Next-generation sequencing (NGS) and pan-tyrosine kinase receptor (TRK) immunohistochemistry (IHC) are powerful tools for NTRK fusion detection. In this study, a total of 4,619 LUAD formalin-fixed, paraffin-embedded tissues were collected from patients who underwent biopsy or resection at the Shanghai Chest Hospital during 2017-2019. All specimens were screened for NTRK1 rearrangements using DNA-based NGS. Thereafter, the cases with NTRK1 rearrangements and cases negative for common driver mutations were analyzed for NTRK1/2/3 fusions using total nucleic acid (TNA)-based NGS and pan-TRK IHC. Overall, four NTRK1/2 fusion events were identified, representing 0.087% of the original sample set. At the DNA level, seven NTRK1 rearrangements were identified, while only two TPM3-NTRK1 fusions were confirmed on TNA-based NGS as functional. In addition, two NTRK2 fusions (SQSTM1-NTRK2 and KIF5B-NTRK2) were identified by TNA-based NGS in 350 'pan-negative' cases. Two patients harboring NTRK1/2 fusions were diagnosed with invasive adenocarcinoma, while the other two were diagnosed with adenocarcinoma in situ and minimally invasive adenocarcinoma. All four samples with NTRK fusions were positive for the expression of pan-TRK. The two samples with NTRK2 fusions showed cytoplasmic staining alone, while the other two samples with NTRK1 fusions exhibited both cytoplasmic and membranous staining. In summary, functional NTRK fusions are found in early-stage LUAD; however, they are extremely rare. According to this study's results, they are independent oncogenic drivers, mutually exclusive with other driver mutations. We demonstrated that NTRK rearrangement analysis using a DNA-based approach should be verified with an RNA-based assay.


Assuntos
Adenocarcinoma de Pulmão , Glicoproteínas de Membrana/genética , Proteínas de Fusão Oncogênica/genética , Receptor trkB/genética , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/análise , China , Estudos de Coortes , Feminino , Rearranjo Gênico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Receptor trkA/genética , Receptor trkC/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...